
Faculty of Engineering, Department of Computer Science

Lifted training and inversion of
neural networks

Martin Benning

Erasmus+ International PhD Summer School 2025
Mathematics and Machine Learning for Image Analysis

University of Bologna
10 June 2025

Beyond backpropagation

• Lifted Bregman training of neural networks

• Regularised inversion of neural networks

• Inversion with theoretical guarantees?

• Conclusions & outlook

Part I
Part II

Joint work with

Xiaoyu (Victor) Wang
Heriot-Watt University

Acknowledgements:

Open access papers available

Alexandra Valavanis
Queen Mary University of London

Audrey Repetti
Heriot-Watt University

Front. Appl. Math. Stat. 9 2013

JMLR 24(232) 2023

(Inversion)

(Training)

Andreas Mang
University of Houston

Azhir Mahmood
University College London

https://www.frontiersin.org/articles/10.3389/fams.2023.1176850/full#h8
https://www.jmlr.org/papers/v24/22-0934.html

Part I: Lifted Bregman training of
neural networks

Training neural networks
An -layer (deep) neural network is a composition of activation functions and affine-linear transformations
applied to inputs , to produce outputs , i.e.

L σ
x y

with parameters Θ = {(Wl, bl)}L
l=1

y = 𝒩(x, Θ) = σ (WL (⋯σ (W1x + b1)⋯) + bL) ,

Training neural networks
An -layer (deep) neural network is a composition of activation functions and affine-linear transformations
applied to inputs , to produce outputs , i.e.

L σ
x y

with parameters Θ = {(Wl, bl)}L
l=1

Training usually boils down to the (approximate) minimisation of empirical risks of the form

E (Θ) =
s

∑
i=1

y = 𝒩(x, Θ) = σ (WL (⋯σ (W1x + b1)⋯) + bL) ,

1
s

yi 𝒩(xi , Θ)ℓ (,)

Training neural networks
An -layer (deep) neural network is a composition of activation functions and affine-linear transformations
applied to inputs , to produce outputs , i.e.

L σ
x y

with parameters Θ = {(Wl, bl)}L
l=1

Training usually boils down to the (approximate) minimisation of empirical risks of the form

y = 𝒩(x, Θ) = σ (WL (⋯σ (W1x + b1)⋯) + bL) ,

1
2s

yi 𝒩(xi , Θ)Example: Mean-Squared Error (MSE)E (Θ) =
s

∑
i=1

−
2

E (Θ) =
s

∑
i=1

Training neural networks
An -layer (deep) neural network is a composition of activation functions and affine-linear transformations
applied to inputs , to produce outputs , i.e.

L σ
x y

with parameters Θ = {(Wl, bl)}L
l=1

Training usually boils down to the (approximate) minimisation of empirical risks of the form

y = 𝒩(x, Θ) = σ (WL (⋯σ (W1x + b1)⋯) + bL) ,

1
2s

yi 𝒩(xi , Θ)Example: Mean-Squared Error (MSE)−
2

Training neural networks
Training usually boils down to the (approximate) minimisation of empirical risks of the form

In the majority of cases, this approximate minimisation is carried out by a combination of

Gradient-based optimisation algorithm

Gradient computation via backpropagation

E (Θ) =
s

∑
i=1

1
2s

yi 𝒩(xi , Θ)−
2

Training neural networks
Training usually boils down to the (approximate) minimisation of empirical risks of the form

E (Θ) =
s

∑
i=1

1
2s

yi 𝒩(xi , Θ)−
2

Θk+1 = Θk −
τk

s

s

∑
i=1

(JΘ
𝒩(xi ,⋅) (Θk))

⊤
(𝒩(xi , Θk) − yi)

Example: gradient descent

Jacobian of 𝒩(xi,Θ) w.r.t Θ

Training neural networks
Training usually boils down to the (approximate) minimisation of empirical risks of the form

E (Θ) =
s

∑
i=1

1
2s

yi 𝒩(xi , Θ)−
2

Θk+1 = Θk −
τk

s

s

∑
i=1

(JΘ
𝒩(xi ,⋅) (Θk))

⊤
(𝒩(xi , Θk) − yi)

Example: gradient descent

Forward pass

 Backward pass

Potential drawbacks of previous approach:

• Backpropagation algorithm is serial in nature

• Differentiation of activation function is requiredσ

Training neural networks

Alternative:

• Lifting of parameter space to aid distributed computation

• Using novel class of loss functions to avoid differentiation of σ

Lifted training of neural networks

E (Θ) =
s

∑
i=1

1
2s

yi 𝒩(xi , Θ)−
2

Lifted training:

as

E(Θ

rewrite

subject to xl
i for all l ∈ {1,…, L}

and x0
i = xi

2
yi − xL

i

=

) =
1
2s

s

∑
i=1

σ()Wlxl−1
i + bl

Lifted training of neural networks

E (Θ) =
s

∑
i=1

1
2s

yi 𝒩(xi , Θ)−
2

Lifted training:

with

where and .x0
i = xi xL

i = yi

The notation is short-hand for X X = {xl
i}

s,L−1
i,l=1

replace

2

• Miguel Carreira-Perpinan and Weiran Wang. Distributed optimization of deeply nested systems. In Artificial Intelligence and Statistics, pages
10–19, 2014.

• Askari, Armin, Geoffrey Negiar, Rajiv Sambharya, and Laurent El Ghaoui. "Lifted neural networks." arXiv preprint arXiv:1805.01532 (2018).

xl
i − σ()E(Θ) =

1
2s

s

∑
i=1

L

∑
l=1

, X Wlxl−1
i + bl

BΨ (,)

Lifted Bregman training of neural networks

E (Θ) =
s

∑
i=1

1
2s

yi 𝒩(xi , Θ)−
2

Lifted Bregman training:

with

with Bregman / Fenchel loss / penalty function

BΨ(y, z) =
1
2

∥y∥2 + Ψ(y) + (1
2

∥ ⋅ ∥2 + Ψ)
*

(z) − ⟨y, z⟩

Xiaoyu Wang, MB. Lifted Bregman Training of neural networks. JMLR 24(232):1—51,
2023.

xl
i Wlxl−1

i + blE(Θ) =
1
2s

s

∑
i=1

L

∑
l=1

, X

replace

Lifted Bregman training of neural networks
Lifted Bregman training:

with Bregman / Fenchel loss / penalty function

BΨ(y, z) =
1
2

∥y∥2 + Ψ(y) + (1
2

∥ ⋅ ∥2 + Ψ)
*

(z) − ⟨y, z⟩

What is ?
And why would we replace the squared Euclidean

norm with such a function?

Ψ

Xiaoyu Wang, MB. Lifted Bregman Training of neural networks. JMLR 24(232):1—51,
2023.

BΨ (,)xl
i Wlxl−1

i + blE(Θ) =
1
2s

s

∑
i=1

L

∑
l=1

, X

y = σ(Wx + b)

Lifted Bregman training of neural networks

Here denotes the (usually nonlinear) activation function of the perceptronσ

What activation functions do we allow?

Suppose we have samples and want to find such that(x, y) W, b

¡
(x

)

-3 -2 -1 0 1 2 3
x

-3

-2

-1

0

1

2

3

-4 -2 2 4

-1.0

-0.5

0.5

1.0

Suppose we choose common activation functions for our neural network, such as

What do all these functions have in common?

rectifier / ramp

soft-thresholding

hyperbolic tangent

Lifted Bregman training of neural networks

¡
(x

)

All previous activation functions are proximal maps:

σ(z) = proxΨ(z) := arg min
u∈ℝn { 1

2
∥u − z∥2 + Ψ(u)}

for some proper, convex and lower semi-continuous function Ψ : ℝn → ℝ ∪ {∞}

Example: Ψ(u) = {0 u ≥ 0
∞ u < 0 ⟹ σ(z) = max(0, z)

Moreau, Jean Jacques. "Fonctions convexes duales et points proximaux dans un
espace hilbertien." (1962).

Lifted Bregman training of neural networks

-3 -2 -1 0 1 2 3
x

-3

-2

-1

0

1

2

3

Example: Ψ(u) = α |u | ⟹ σ(z) =
z − α z > α
0 |z | ≤ α
z + α z < − α

for some proper, convex and lower semi-continuous function Ψ : ℝn → ℝ ∪ {∞}

Moreau, Jean Jacques. "Fonctions convexes duales et points proximaux dans un
espace hilbertien." (1962).

All previous activation functions are proximal maps:

Lifted Bregman training of neural networks

σ(z) = proxΨ(z) := arg min
u∈ℝn { 1

2
∥u − z∥2 + Ψ(u)}

-4 -2 2 4

-1.0

-0.5

0.5

1.0

Example: Ψ(u) = {u tanh−1(u) + 1
2 (log(1 − u2) − u2) |u | < 1

∞ otherwise

⟹ σ(z) = tanh(z)

for some proper, convex and lower semi-continuous function Ψ : ℝn → ℝ ∪ {∞}

Combettes, Patrick L., and Jean-Christophe Pesquet. "Deep neural network structures
solving variational inequalities." Set-Valued and Variational Analysis (2020): 1-28.

All previous activation functions are proximal maps:

Lifted Bregman training of neural networks

σ(z) = proxΨ(z) := arg min
u∈ℝn { 1

2
∥u − z∥2 + Ψ(u)}

All previous activation functions are proximal maps:

for some proper, convex and lower semi-continuous function Ψ : ℝn → ℝ ∪ {∞}

Hasannasab, M., Hertrich, J., Neumayer, S., Plonka, G., Setzer, S., & Steidl, G. (2020). Parseval proximal neural
networks. Journal of Fourier Analysis and Applications, 26, 1-31.
Combettes, Patrick L., and Jean-Christophe Pesquet. "Deep neural network structures solving variational
inequalities." Set-Valued and Variational Analysis (2020): 1-28.
Hertrich, J., Neumayer, S., & Steidl, G. (2021). Convolutional proximal neural networks and plug-and-play algorithms.
Linear Algebra and its Applications, 631, 203-234.
Le, H. T. V., Repetti, A., & Pustelnik, N. (2023). PNN: From proximal algorithms to robust unfolded image denoising
networks and Plug-and-Play methods. arXiv preprint arXiv:2308.03139.

and many many more…

Lifted Bregman training of neural networks

Lots of works focus on proximal maps as activation functions, e.g.

σ(z) = proxΨ(z) := arg min
u∈ℝn { 1

2
∥u − z∥2 + Ψ(u)}

y = σ(Wx + b)

Wx + b (y)∈ ∂Ψ− y⟺

∂Ψ(y) = {p Ψ(z) ≥ Ψ(y) + ⟨p, z − y⟩ , ∀z}where is the subdifferential of Ψ

⟺ y = arg min
z { 1

2
∥z − (Wx + b)∥2 + Ψ(z)}

Lifted Bregman training of neural networks

= proxΨ(Wx + b)

Suppose we have samples and want to find such that(x, y) W, b

1
2

∥y∥2 + Ψ(y) + (1
2

∥ ⋅ ∥2 + Ψ)
*

(

(y)∈ ∂ (1
2

∥ ⋅ ∥2 +)Ψ⟺

⟺

Wx + b

Legendre, Adrien-Marie. Mémoire sur l'intégration de quelques équations aux différences partielles. In
Histoire de l'Académie royale des sciences, avec les mémoires de mathématique et de physique. Paris:
Imprimerie royale. pp. 309–351, 1789
Werner Fenchel, Convex cones, sets, and functions. Princeton University, 1953
Theorem 23.5, Ralph Tyrell Rockafellar, Convex analysis, Princeton university press, 1970

y = σ(Wx + b)

where (1
2

∥ ⋅ ∥2 + Ψ)
*

(z) = sup
x {⟨x, z⟩ −

1
2

∥x∥2 − Ψ(x)}
) = ⟨y, ⟩Wx + b Wx + b

Lifted Bregman training of neural networks
Suppose we have samples and want to find such that(x, y) W, b

with Bregman / Fenchel function

1
2

∥y∥2 + Ψ(y) + (1
2

∥ ⋅ ∥2 + Ψ)
*

() ⟨y, ⟩z z−BΨ(y, z) =

Wang, X., & MB. A Lifted Bregman Formulation for the Inversion of Deep Neural
Networks. Front. Appl. Math. Stat. 9, (2023).

Lifted Bregman training of neural networks
Lifted Bregman network

BΨ (,)E(Θ, X) =
1
2s

s

∑
i=1

L

∑
l=1

xl
i Wl xl−1

i + bl

with Bregman / Fenchel function

What is great about this function?

1. , for all

2.

3. for

BΨ(y, z) =
1
2

∥y − proxΨ(z)∥2 + DproxΨ*(z)
Ψ (y, proxΨ(z)) ≥

1
2

∥y − proxΨ(z)∥2 ≥ 0 y, z

∇2BΨ(y, z) = proxΨ(z) − y

BΨ(y, z) = Ez(y) − Ez(proxΨ(z)) = D0
Ez

(y, proxΨ(z)) Ez(u) :=
1
2

∥u − z∥2 + Ψ(u)

1
2

∥y∥2 + Ψ(y) + (1
2

∥ ⋅ ∥2 + Ψ)
*

() ⟨y, ⟩z z−BΨ(y, z) =

Xiaoyu Wang, MB. Lifted Bregman Training of neural networks. JMLR 24(232):1—51, 2023.

Lifted Bregman training of neural networks
Lifted Bregman network

BΨ (,)E(Θ, X) =
1
2s

s

∑
i=1

L

∑
l=1

xl
i Wl xl−1

i + bl

Optimality conditions for and :Wj bj

0 = (σ (Wj xj−1 + bj) − xj) x⊤
j−1

0 = σ (Wj xj−1 + bj) − xj

Lifted Bregman network

with Bregman / Fenchel loss

Xiaoyu Wang, MB. Lifted Bregman Training of neural networks. JMLR 24(232):1—51, 2023.

BΨ (,)E(Θ, X) =
1
2s

s

∑
i=1

L

∑
l=1

xl
i

Lifted Bregman training of neural networks

Wl xl−1
i + bl

1
2

∥y∥2 + Ψ(y) + (1
2

∥ ⋅ ∥2 + Ψ)
*

() ⟨y, ⟩z z−BΨ(y, z) =

Lifted Bregman training of neural networks

1
2

|σ(z) − 1/2 |2

BΨ(1/2,z)

vs

Illustration:

σ(z) = max(0,z)

σ(z) = tanh(z)

σ(z) = soft-thresholding(z,1/2)

© Wikimedia commons

Sparse (denoising) autoencoder toy example

Fashion MNIST
image codec

Images are centred

Numerical results

©becominghuman.ai

Xiao, H., Rasul, K. and Vollgraf, R., 2017. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747.

https://en.wikipedia.org/wiki/Autoencoder#/media/File:Autoencoder_schema.png

Sparse (denoising) autoencoder toy example

Numerical results

© Wikimedia commons

min
s

∑
i=1

5

∑
j=1

BΨj (xi
j , Wjxi

j−1 + bj) + α xi
3 1

Idea: make encoding sparse

Network architecture:

σj(z) =
max(0,z) j ∈ {1,2,4}
soft-thresholding(z, ρ) j = 3
z j = 5 Layer dimensions 784-784-784-784-784

https://en.wikipedia.org/wiki/Autoencoder#/media/File:Autoencoder_schema.png

Numerical results

Sparse

Numerical results

Trained on 1000 images Trained on 10000 images

LBN minimisation via implicit SGD and proximal gradient descent for subproblems*

*implementation details are on extra slide for the Q&A if anyone is interested

Numerical resultsExample: Proximal Neural Networks (PNNs) for image denoising

uk+1 = proxτkg* (uk − τkL(L*uk − z))

̂x = arg min
x∈ℝn { 1

2
∥x − z∥2 + g(Lx)}

A more traditional way to solve denoising problems is using proximal maps of the form

This problem can for instance be solved with the dual forward backward algorithm*, i.e.

̂x = z − lim
k→∞

L*uk

for k = 0,1,…

*P. L. Combettes, Đ. Dũng, and B. C. Vũ, “Dualization of signal recovery problems,” Set-Valued Var. Anal., vol.
18, no. 3, pp. 373–404, 2010.

Alternatively, one can unroll the algorithm for a fixed no. of iterations and learn trainable parameters , i.e.k* Lk

uk+1 = proxτkg* (uk − τkLk (L*k uk − z))
xk* = z − L*k* uk*

for k = 0,1,…, k* − 1

Numerical resultsExample: Proximal Neural Networks (PNNs) for image denoising

Alternatively, one can unroll the algorithm for a fixed no. of iterations and learn trainable parameters , i.e.k* Lk

uk+1 = proxτkg* (uk − τkLk (L*k uk − z))
xk* = z − L*k* uk*

Approach perfectly suits lifted Bregman approach, i.e.

min
s

∑
i=1 [ℓ(zi − L*k* ui

k*, xi) +
k*−1

∑
k=0

Bτkg* (ui
k+1, ui

k − τkLk (L*k ui
k − zi))]

X. Wang, MB, A. Repetti, A lifted Bregman strategy for training unfolded proximal neural
network gaussian denoisers, in: 2024 IEEE 34th International Workshop on Machine
Learning for Signal Processing (MLSP), IEEE, 2024, pp. 1–6.

for k = 0,1,…, k* − 1

Numerical resultsExample: Proximal Neural Networks (PNNs) for image denoising

X. Wang, MB, A. Repetti, A lifted Bregman strategy for training unfolded proximal neural
network gaussian denoisers, in: 2024 IEEE 34th International Workshop on Machine
Learning for Signal Processing (MLSP), IEEE, 2024, pp. 1–6.

Part II: Regularised inversion of
neural networks

N()

We consider the (deterministic) inverse
problems of the form

where the goal is to recover for given
data

u† f

u†

f

=

∈ range(N)

u† = unknown solution

f = measured data

 is a neural networkN

Engl, H. W., Hanke, M., & Neubauer, A. (1996). Regularization of inverse problems (Vol. 375).
Springer Science & Business Media.
Benning, M., & Burger, M. (2018). Modern regularization methods for inverse problems. Acta
Numerica, 27, 1-111.

Inverting neural networks

where the goal is to recover for given
data

f δ

f δ

f δ = measured data

Engl, H. W., Hanke, M., & Neubauer, A. (1996). Regularization of inverse problems (Vol. 375).
Springer Science & Business Media.
Benning, M., & Burger, M. (2018). Modern regularization methods for inverse problems. Acta
Numerica, 27, 1-111.

u† = unknown solution

N()u† =

u†

 is a neural networkN

Inverting neural networks
We consider the (deterministic) inverse
problems of the form

Example:

Inverting neural networks

Example:

Inverting neural networks

Example:

Inverting neural networks

Example:

Inverting neural networks

Example:

Why is this interesting?

Toy problem: Train such that A A(u†
i) ≈ u†

i

Wang, X., & MB. A Lifted Bregman Formulation for the Inversion of Deep Neural
Networks. Front. Appl. Math. Stat. 9, (2023).

Simple autoencoder A(u) = W2 + b2max (0,W1u + b1)

u†
i A(u†

i)

Example:

Why is this interesting?
A(u) = W2 + b2

Toy problem: Train such that A A(u†
i) ≈ u†

i

max (0,W1u + b1)

u†
i A(u†

i)
Wang, X., & MB. A Lifted Bregman Formulation for the Inversion of Deep Neural

Networks. Front. Appl. Math. Stat. 9, (2023).

Simple autoencoder

Solve for R(N(u†
i)) ≈ u†

i N(u) = max (0,W1u + b1)

R(N(u†
i))

 does not require training and
only depends on pre-trained
R

N
We can improve pre-trained
decoders by replacing them
with reconstruction methods

Example:

Why is this interesting?
nonlinear inverse problems

From Alexander Denker, Johannes Hertrich, Zeljko Kereta, Silvia Cipiccia, Ecem Erin, and Simon Arridge. Plug-and-
play half-quadratic splitting for ptychography. arXiv preprint arXiv:2412.02548, 2024.

f = |ℱ(u†) |

Ptychography

Example:

Why is this interesting?
nonlinear inverse problems

From Alexander Denker, Johannes Hertrich, Zeljko Kereta, Silvia Cipiccia, Ecem Erin, and Simon Arridge. Plug-and-
play half-quadratic splitting for ptychography. arXiv preprint arXiv:2412.02548, 2024.

f = |ℱ(u†) |

Idea: replace non-linearity with neural network approximation and solve instead| ⋅ | N f = N(ℱu†)

Ptychography

Inversion of neural networks
How can we invert neural networks?

We can design another neural network to approximate the inverse of : R N

R(N(u†)) ≈ u†

Neural network (Encoder)
Regularisation (Decorder)

Inversion of neural networks
How can we invert neural networks?

We can design another neural network to approximate the inverse of : R N

R(N(u†)) ≈ u†

Neural network (Encoder)
Regularisation (Decorder)

We choose neural networks such as

N(u) = proxΨ(Wu + b) Perceptron

Proximal map

Inversion of neural networks
How can we invert neural networks?

We can design another neural network to approximate the inverse of : R N

R(N(u†)) ≈ u†

Neural network (Encoder)
Regularisation (Decorder)

We choose neural networks such as

N(u) = proxΨ(Wu + b) Perceptron

Inversion of neural networks
How can we invert neural networks?

We can design another neural network to approximate the inverse of : R N

R(N(u†)) ≈ u†

Neural network (Encoder)
Regularisation (Decorder)

We choose neural networks such as

N(u) = Wl proxΨl−1
(Wl−1⋯ W2proxΨ1

(W1u + b1) + b2)⋯ bl−1) + bl Feed-forward networks

Inversion of neural networks
How can we invert neural networks?

We can design another neural network to approximate the inverse of : R N

R(N(u†)) ≈ u†

Neural network (Encoder)
Regularisation (Decorder)

We choose neural networks such as

N(u) = Wl ul−1 + bl Residual neural networks
uj = uj−1 + Vj−1proxΨj−1 (Wj−1uj−1 + bj−1)

Inversion of neural networks
How can we invert neural networks?

We can design another neural network to approximate the inverse of : R N

R(N(u†)) ≈ u†

Neural network (Encoder)
Regularisation (Decorder)

All previous networks can be written in compact form as

N(u) = Ku

Mu = VproxΨ (Wu + b)

tensor representation of
all layers in one variable

Inversion of neural networks
How can we invert neural networks?

We can design another neural network to approximate the inverse of : R N

R(N(u†)) ≈ u†

or more like
R(f δ) → u† for f δ → f = N(u†) when δ → 0

Open questions: • What architecture should we choose for ?
• Can we treat as a black box or do we need to know its architecture and

parameters when we construct ?
• Do we need to train , possibly from scratch?
• Do we have any mathematical guarantees that approximates the inverse of ?

R
N

R
R

R N

Inversion of neural networks
We can design another neural network to approximate the inverse of : R N

R(N(u†)) ≈ u†

Open questions: • What architecture should we choose for ?
• Can we treat as a black box or do we need to know its architecture and

parameters when we construct ?
• Do we need to train , possibly from scratch?
• Do we have any mathematical guarantees that approximates the inverse of ?

R
N

R
R

R N

Example:
Neural network with arbitrary architecture

No idea

Yes

Yes
No

R(f δ) = hl (hl−1 (⋯ h1(f δ, p1), ⋯, pl−1), pl) Activation functions h1, …, hl

Parameters p1, …, pl

J(u)}

Inversion of neural networks
We can design another neural network to approximate the inverse of : R N

R(N(u†)) ≈ u†

Open questions: • What architecture should we choose for ?
• Can we treat as a black box or do we need to know its architecture and

parameters when we construct ?
• Do we need to train , possibly from scratch?
• Do we have any mathematical guarantees that approximates the inverse of ?

R
N

R
R

R N

Example: Variational regularisation with quadratic fidelity

Some ideas

No*

No
Possibly

R(f δ)

Usually requires computation of backward-pass ; and can be as challenging as if one were to use directly(∇N) K

∈ arg min
u {1

2
∥N(u) − f δ∥2 +α

DJ(u, uk) }∈ arg min
u {

Inversion of neural networks
We can design another neural network to approximate the inverse of : R N

R(N(u†)) ≈ u†

Open questions: • What architecture should we choose for ?
• Can we treat as a black box or do we need to know its architecture and

parameters when we construct ?
• Do we need to train , possibly from scratch?
• Do we have any mathematical guarantees that approximates the inverse of ?

R
N

R
R

R N

Example: Iterative regularisation with quadratic fidelity

Some ideas

No*

No
Possibly

Usually requires computation of backward-pass ; and can be as challenging as if one were to use directly(∇N) K

R(f δ) = uk* for + stopping criterionuk+1 1
2

∥N(u) − f δ∥2 +α

}∈ arg min
u {

Inversion of neural networks
We can design another neural network to approximate the inverse of : R N

R(N(u†)) ≈ u†

Open questions: • What architecture should we choose for ?
• Can we treat as a black box or do we need to know its architecture and

parameters when we construct ?
• Do we need to train , possibly from scratch?
• Do we have any mathematical guarantees that approximates the inverse of ?

R
N

R
R

R N

Example: Variational regularisation with bespoke fidelity

Several options

No

No
Yes

In the following, we will derive a suitable candidate for this bespoke data fidelity term

J(u)R(f δ) Bespoke (𝒩(u), f δ) +α

Inversion of neural networks
How can we invert neural networks?

We can design another neural network to approximate the inverse of : R N

R(N(u†)) ≈ u†

Neural network (Encoder)
Regularisation (Decorder)

One possible choice for :R

(uρ, zρ) ∈ arg min
u,z {Eρ

Ψ(u, z) + J(u)} (variational regularisation)

with regularisation function and data fidelity defined asJ Eρ
Ψ

Eρ
Ψ(u, z) =

λ
2

∥Ku − f δ∥2 + BΨ(z, Wu + b) + χ=0(Mu − Vz) +
ρ
2

∥Mu − Vz∥2

Inversion of neural networks
One possible choice for :R

(uρ, zρ) ∈ arg min
u,z {Eρ

Ψ(u, z) + J(u)} (variational regularisation)

with Fenchel / Bregman penalty function

BΨ(z, x) = (1
2

∥ ⋅ ∥2 + Ψ)(z) + (1
2

∥ ⋅ ∥2 + Ψ)
*

(x) − ⟨z, x⟩

with regularisation function and data fidelity defined asJ Eρ
Ψ

Eρ
Ψ(u, z) =

λ
2

∥Ku − f δ∥2 + BΨ(z, Wu + b) + χ=0(Mu − Vz) +
ρ
2

∥Mu − Vz∥2

Inversion of neural networks
One possible choice for :R

(uρ, zρ) ∈ arg min
u,z {Eρ

Ψ(u, z) + J(u)} (variational regularisation)

with Fenchel / Bregman penalty function

BΨ(z, x) = (1
2

∥ ⋅ ∥2 + Ψ)(z) + (1
2

∥ ⋅ ∥2 + Ψ)
*

(x) − ⟨z, x⟩

BΨ(z, Wx + b) = 0 ⟺ z = proxΨ(Wx + b)
χ=0(Mu − Vz) = 0 ⟺ Mu = Vz

Inversion of neural networks
Example: Shallow two-layer neural networks (or linear combinations of 1d perceptrons)

N(u) =
m

∑
j=1

cj u, wj, bj, cj ∈ ℝproxΨj
()wj u + bj

Inversion of neural networks
Example: Shallow two-layer neural networks (or linear combinations of 1d perceptrons)

u, wj, bj, cj ∈ ℝ

uj = ∀j ∈ {1,…, m}

N(u) =
m

∑
j=1

cj

proxΨj
()wj u + bj

uj

Inversion of neural networks
Example: Shallow two-layer neural networks (or linear combinations of 1d perceptrons)

Corresponding variational regularisation framework:

uα ∈ arg min
u∈ℝ1+m

1
2

f δ −
m

∑
j=1

cjuj

2

+
m

∑
j=1

BΨj
(uj, wju0 + bj) + αJ(u0, u1, …, um)

Implicit/explicit coordinate descent implementation for choice J(u0, u1, …, um) =
1
2

|u0 |2

u, wj, bj, cj ∈ ℝ

uj = ∀j ∈ {1,…, m}

N(u) =
m

∑
j=1

cj

proxΨj
()wj u + bj

uj

Inversion of neural networks

Implicit/explicit coordinate descent implementation for choice J(u0, u1, …, um) =
1
2

|u0 |2

Corresponding variational regularisation framework:

uk+1
l = prox(1+c2

l)−1 Ψl

cl (f δ − ∑l−1
j=1 cjuk+1

j − ∑m
j=l+1 cjuk

j) + wluk
0 + bl

1 + c2
l

uk+1
0 = (1 + α/∥w∥2)−1 uk

0 − ∥w∥−2
m

∑
j=1

wj (proxΨj
(wjuk

0 + bj) − uk+1
j)

∀l ∈ {1,…, m}

uα ∈ arg min
u∈ℝ1+m

1
2

f δ −
m

∑
j=1

cjuj

2

+
m

∑
j=1

BΨj
(uj, wju0 + bj) + αJ(u0, u1, …, um)

Inversion of neural networks

Decoder:

uk+1
l = prox(1+c2

l)−1 Ψl

cl (f δ − ∑l−1
j=1 cjuk+1

j − ∑m
j=l+1 cjuk

j) + wluk
0 + bl

1 + c2
l

uk+1
0 = (1 + α/∥w∥2)−1 uk

0 − ∥w∥−2
m

∑
j=1

wj (proxΨj
(wjuk

0 + bj) − uk+1
j)

∀l ∈ {1,…, m}

Encoder:

R(f δ) = (u*0 u*1 ⋯ u*m)⊤
where are solutions of the fixed-point iteration u*0 , u*1 , ⋯, u*m

N(u) =
m

∑
j=1

cj proxj ()wj u + bj

Inversion of neural networks
Example:

Ψj(v) = {0 v ≥ 0
∞ v < 0

⇒ proxΨj
(z) = ReLU(z) = max(0,z)

N(u) =
m

∑
j=1

cj

wj = 1, ∀j ∈ {1,…,25}m = 25

proxj ()wj u + bj

α = 10−4

bj = − (j − 1)h, j ∈ {1,…,25}, h = 3/50

Inversion of neural networks
Example: N(u) =

m

∑
j=1

cj

wj = 1, ∀j ∈ {1,…,25}m = 25

max(0,)wj u + bj

Function K(u) = u(2
3 u)

3u

α = 10−4

bj = − (j − 1)h, j ∈ {1,…,25}, h = 3/50

Inversion of neural networks
Example: N(u) =

m

∑
j=1

cj

wj = 1, ∀j ∈ {1,…,25}m = 25

max(0,)wj u + bj

Coefficientsα = 10−4

bj = − (j − 1)h, j ∈ {1,…,25}, h = 3/50

Inversion of neural networks
Example:

Inversion of neural networks
Example:

Inversion of neural networks
Example:

Inversion of neural networks
Example:

Inversion of neural networks
Example: Residual neural networks

N(u) = ul

uk = uk−1 + W⊤
k proxΨk

(Wkuk−1 + bk) ∀ k ∈ {1,…, l}
Corresponding variational regularisation framework:

uα ∈ arg min
u { λ

2
∥Ku − f δ∥2 + BΨ(z, Wu + b) + J(u)}

for

M =

−I I 0 ⋯ 0
0 −I I 0
⋮ ⋱ ⋱ ⋮
⋮ −I I
0 0 ⋯ 0 0

W =

W1 0 0 ⋯ 0 0
0 W2 0 ⋯ 0 0
⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ Wl 0
0 0 0 ⋯ 0 0

b =

b1

b2
⋮
bl

0

subject to

l

∑
k=0

Ψk(zk)

Mu = W⊤z

Ψ(z0, …, zl) =

Inversion of neural networks
Example:

l = 20

Function K(u) = u3 + u

Inversion with theoretical
guarantees?

Inversion with theoretical guarantees?
Can we provide some theoretical properties for the objective function

or the regularisation operator?

R(f δ) ∈ arg min
u { λ

2
∥Ku − f δ∥2 + BΨ(z, Wu + b) + χ=0(Mu − Vz) +

ρ
2

∥Mu − Vz∥2 + J(u)}

Eρ
Ψ(u, z) =

λ
2

∥Ku − f δ∥2 + BΨ(z, Wu + b) + χ=0(Mu − Vz) +
ρ
2

∥Mu − Vz∥2

Inversion with theoretical guarantees?
Can we provide some theoretical properties for the objective function

or the regularisation operator?

R(f δ) ∈ arg min
u { λ

2
∥Ku − f δ∥2 + BΨ(z, Wu + b) + χ=0(Mu − Vz) +

ρ
2

∥Mu − Vz∥2 + J(u)}

Eρ
Ψ(u, z) =

λ
2

∥Ku − f δ∥2 + BΨ(z, Wu + b) + χ=0(Mu − Vz) +
ρ
2

∥Mu − Vz∥2

Inversion with theoretical guarantees?
Can we provide some theoretical properties for the objective function

A sufficient condition for convexity is .⟨∂Eρ
Ψ(u1, z2) − ∂Eρ

Ψ(u2, z2), (u1
z1) − (u2

z2)⟩ ≥ 0

It can be shown that for a sufficient condition for achieving this inequality for all isV = W⊤ u1, u2, z1, z2

Q := λK⊤K − ρ−1I − M − M⊤ ⪰ 0

Eρ
Ψ(u, z) =

λ
2

∥Ku − f δ∥2 + BΨ(z, Wu + b) + χ=0(Mu − Vz) +
ρ
2

∥Mu − Vz∥2

uj = uj−1 + W⊤
j−1proxΨj−1 (Wj−1uj−1 + bj−1)Example: ⟹ is positive semi-definiteQ

Inversion with theoretical guarantees?
uj = uj−1 − W⊤

j−1proxΨj−1 (Wj−1uj−1 + bj−1)Example:

f(x) = x + x3

Inversion with theoretical guarantees?
Can we provide some theoretical properties for the objective function

or the regularisation operator?

R(f δ) ∈ arg min
u { λ

2
∥Ku − f δ∥2 + BΨ(z, Wu + b) + χ=0(Mu − Vz) +

ρ
2

∥Mu − Vz∥2 + J(u)}

Eρ
Ψ(u, z) =

λ
2

∥Ku − f δ∥2 + BΨ(z, Wu + b) + χ=0(Mu − Vz) +
ρ
2

∥Mu − Vz∥2

Inversion with theoretical guarantees?
Can we provide some theoretical properties for the objective function

or the regularisation operator?

R(f δ) ∈ arg min
u { λ

2
∥Ku − f δ∥2 + BΨ(z, Wu + b) + χ=0(Mu − Vz) +

ρ
2

∥Mu − Vz∥2 + J(u)}

Eρ
Ψ(u, z) =

λ
2

∥Ku − f δ∥2 + BΨ(z, Wu + b) + χ=0(Mu − Vz) +
ρ
2

∥Mu − Vz∥2

No general results yet, but for

R(f δ) ∈ arg min
u

{BΨ(f δ, Wu + b) + αJ(u)}
we can show the following

Theorem:

DJ(u†, R(f δ)) ≤ 2δ2

α
+ α∥v†∥2 +

1
α (Ψ (f δ + αv†) + Ψ (f δ − αv†) − 2Ψ(f δ))

Here denotes the Bregman distance w.r.t. .DJ J

Burbea Rao divergence
between and f δ + αv† f δ − αv†

suppose we have = and and satisfies the source
condition . Then, a solution satisfies

f proxΨ(Wu† + b) BΨ(f δ, Wu† + b) ≤ δ2 u†

W⊤v† ∈ ∂J(u†) uα ∈ arg min
u

{BΨ(f δ, Wu + b) + αJ(u)}

Wang, X., & MB. A Lifted Bregman Formulation for the Inversion of Deep Neural
Networks. Front. Appl. Math. Stat. 9, (2023).

Inversion with theoretical guarantees?

Classical error estimate

Example
f = max(0,Wu† + b)Ψ(z) = {0 z ≥ 0

∞ else
⇒

⇒ Ψ (f δ + αv†) + Ψ (f δ − αv†) − 2Ψ(f δ) = 0 if v†
j ∈ [−

f δ
j

α
,

f δ
j

α]
If we choose , then we observe α(δ) = δ 2/∥v†∥

DJ (u†, uα(δ)) ≤ 2 2 ∥v†∥ δ

= C

Inversion with theoretical guarantees?

Wang, X., & MB. A Lifted Bregman Formulation for the Inversion of Deep Neural
Networks. Front. Appl. Math. Stat. 9, (2023).

⟶δ→0 0

Example: ReLU Perceptron

N(u) = max(0,Wu† + b)

Ground truth u† Data f

W : ℝ64×64 → ℝ512

b ∈ ℝ512

Random entries
with zero mean and std one

Wang, X., & MB. A Lifted Bregman Formulation for the Inversion of Deep Neural
Networks. Front. Appl. Math. Stat. 9, (2023).

Inversion with theoretical guarantees?

Data f δ

Random entries
with zero mean and std one

Wang, X., & MB. A Lifted Bregman Formulation for the Inversion of Deep Neural
Networks. Front. Appl. Math. Stat. 9, (2023).

Example: ReLU Perceptron

N(u) = max(0,Wu† + b)

Ground truth u†

Inversion with theoretical guarantees?
W : ℝ64×64 → ℝ512

b ∈ ℝ512

Reconstruction R(f δ) Data f δ

Random entries
with zero mean and std one

α = 0.015

J(u) = ∑
i=1

∑
j=1

|∇u |2
i, j,1 + |∇u |2

i, j,2

Wang, X., & MB. A Lifted Bregman Formulation for the Inversion of Deep Neural
Networks. Front. Appl. Math. Stat. 9, (2023).

Example: ReLU Perceptron

N(u) = max(0,Wu† + b)

Inversion with theoretical guarantees?
W : ℝ64×64 → ℝ512

b ∈ ℝ512

α = 9 × 10−3

Six-layer convolutional autoencoder. Invert code with TV-based variational regularisation

Dimension of code is 300
u† A(u†) R(f δ)

J(u) = ∑
i=1

∑
j=1

|∇u |2
i, j,1 + |∇u |2

i, j,2

Wang, X., & MB. A Lifted Bregman Formulation for the Inversion of Deep Neural
Networks. Front. Appl. Math. Stat. 9, (2023).

Inversion of neural networks
Example:

Conclusions & outlook

Conclusions & outlook
Conclusions:

Outlook:

we have

• Apply approach to real-world scenarios (blind deconvolution etc.)
• Extend concepts to different architectures
• Prove convergence results for architectures more complex than perceptrons
• Explore parallel or distributed computing frameworks

• introduced a novel lifted training approach for feed-forward networks
• shown that novel approach avoids differentiating activation functions
• shown that approach can be used for inversion of neural networks (decoder without training!)
• demonstrated that approach works empirically with numerical experiments
• proven that for one layer we have a convergent regularisation method

Thank you for your attention!

Acknowledgements:

Relevant open access research papers (more to come)

Lifted Bregman Training Lifted Bregman Inversion

Front. Appl. Math. Stat. 9 2013JMLR 24(232) 2023

https://www.frontiersin.org/articles/10.3389/fams.2023.1176850/full#h8
https://www.jmlr.org/papers/v24/22-0934.html

Implementation
We minimise

BΨ (,E(Θ, X) =
1
2s

s

∑
i=1

L

∑
l=1

xl
i Wl xl−1

i +bl)

BΨ (,)

Implementation
We minimise

E(Θ, X) =
1
2s

s

∑
i=1

L

∑
l=1

xl
i Wl xl−1

i

We minimise

via a combination of an implicit stochastic gradient method*

(Θk+1, Xk+1) = arg min
Θ,X

1
|Sp | ∑

i∈Sp
[

L

∑
l=1

BΨ (xi
l , Wlxi

l−1) +
1

2τk
∥Wl − Wk

l ∥2]
with random batch and proximal gradient descent** for the inner problem:Sp

BΨ (,)E(Θ, X) =
1
2s

s

∑
i=1

L

∑
l=1

xl
i Wl xl−1

i

Wj+1
l = Wj

l −
γ j

l

|Sp | ∑
i∈Sp

[σ (Wj
l (xi

l−1)j) (xi
l−1)⊤

j] +
1
τk (Wj

l − Wk
l)

(xi
l)j = prox

μ j
l(1

2 ∥⋅∥2+ Ψ) ((xi
l)j − μj

l ((Wj
l)

⊤ (σ (Wj
l (xi

l)j) − (xi
l+1)j) − Wj

l (xi
l−1)j))

Implementation

We minimise via a combination of an implicit stochastic gradient method*E

(Θk+1, Xk+1) = arg min
Θ,X

1
|Sp | ∑

i∈Sp
[

L

∑
l=1

BΨ (xi
l , Wlxi

l−1) +
1

2τk
∥Wl − Wk

l ∥2]
with random batch and proximal gradient descent** for the inner problem:Sp

Wj+1
l = Wj

l −
γ j

l

|Sp | ∑
i∈Sp

[σ (Wj
l (xi

l−1)j) (xi
l−1)⊤

j] +
1
τk (Wj

l − Wk
l)

(xi
l)j = prox

μ j
l(1

2 ∥⋅∥2+ Ψ) ((xi
l)j − μj

l ((Wj
l)

⊤ (σ (Wj
l (xi

l)j) − (xi
l+1)j) − Wj

l (xi
l−1)j))

Implementation

*Toulis, P., & Airoldi, E. M. (2017). Asymptotic and finite-sample properties of estimators based on stochastic
gradients. The Annals of Statistics, 45(4), 1694–1727.
**Lions, P. L., & Mercier, B. (1979). Splitting algorithms for the sum of two nonlinear operators. SIAM Journal on
Numerical Analysis, 16(6), 964-979.

Implementation
We solve

xα ∈ arg min
x

BΨ(yδ, Wx + b) + α R(x)

xα ∈ arg min
x

BΨ(yδ, Wx + b) + α

Implementation
We solve

∑
p=1

∑
q=1

(∇x)p,q,1
2

+ (∇x)p,q,2
2

Here, is a forward finite-difference discretisation of the gradient operator∇x

xα ∈ arg min
x

BΨ(yδ, Wx + b) + α sup
z

⟨∇x, z⟩ − ∑
p=1

∑
q=1

| ⋅p,q,1 |2 + | ⋅p,q,2 |2

⋆

(z)

We replace the regularisation function by its convex conjugate

Implementation

xα ∈ arg min
x

BΨ(yδ, Wx + b) + α sup
z

⟨∇x, z⟩ − ∑
p=1

∑
q=1

| ⋅p,q,1 |2 + | ⋅p,q,2 |2

⋆

(z)

We replace the regularisation function by its convex conjugate

and solve this saddle-point problem with a generalised PDHG method*

xk+1 = xk − τx (W⊤σ (Wxk + b) − yδ) − αdivzk)
z̃k = zk + τz (2α∇xk+1 − α∇xk)

zk+1
p,q,d = z̃k

p,q,d / max (1, z̃k
p,q,1

2
+ z̃k

p,q,2

2

) for d ∈ {1,2}

*Chambolle, A., & Pock, T. (2016). An introduction to continuous optimization for
imaging. Acta Numerica, 25, 161-319.

