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Part I: Lifted Bregman training of 
neural networks



Training neural networks
An -layer (deep) neural network is a composition of activation functions  and affine-linear transformations 
applied to inputs , to produce outputs , i.e. 

L σ
x y

with parameters  Θ = {(Wl, bl)}L
l=1

y = 𝒩(x, Θ) = σ (WL (⋯σ (W1x + b1)⋯) + bL) ,
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Training neural networks
Training usually boils down to the (approximate) minimisation of empirical risks of the form

In the majority of cases, this approximate minimisation is carried out by a combination of

Gradient-based optimisation algorithm 

Gradient computation via backpropagation
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Training neural networks
Training usually boils down to the (approximate) minimisation of empirical risks of the form
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Forward pass

 Backward pass



Potential drawbacks of previous approach:

• Backpropagation algorithm is serial in nature 

• Differentiation of activation function  is requiredσ

Training neural networks

Alternative:

• Lifting of parameter space to aid distributed computation 

• Using novel class of loss functions to avoid differentiation of σ



Lifted training of neural networks
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Lifted training of neural networks

E (Θ) =
s

∑
i=1

1
2s

yi 𝒩(xi , Θ)−
2

Lifted training:

with

where  and .x0
i = xi xL

i = yi

The notation  is short-hand for X X = {xl
i}

s,L−1
i,l=1

replace

2

• Miguel Carreira-Perpinan and Weiran Wang. Distributed optimization of deeply nested systems. In Artificial Intelligence and Statistics, pages 
10–19, 2014.  

• Askari, Armin, Geoffrey Negiar, Rajiv Sambharya, and Laurent El Ghaoui. "Lifted neural networks." arXiv preprint arXiv:1805.01532 (2018).
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Lifted Bregman training of neural networks

E (Θ) =
s

∑
i=1

1
2s

yi 𝒩(xi , Θ)−
2

Lifted Bregman training:

with

with Bregman / Fenchel loss / penalty function

BΨ(y, z) =
1
2

∥y∥2 + Ψ(y) + ( 1
2

∥ ⋅ ∥2 + Ψ)
*

(z) − ⟨y, z⟩

Xiaoyu Wang, MB. Lifted Bregman Training of neural networks. JMLR 24(232):1—51, 
2023. 
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Lifted Bregman training:

with Bregman / Fenchel loss / penalty function

BΨ(y, z) =
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∥y∥2 + Ψ(y) + ( 1
2

∥ ⋅ ∥2 + Ψ)
*

(z) − ⟨y, z⟩

What is ?  
And why would we replace the squared Euclidean 

norm with such a function?

Ψ

Xiaoyu Wang, MB. Lifted Bregman Training of neural networks. JMLR 24(232):1—51, 
2023. 
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y = σ(Wx + b)

Lifted Bregman training of neural networks

Here  denotes the (usually nonlinear) activation function of the perceptronσ

What activation functions do we allow?

Suppose we have samples  and want to find  such that(x, y) W, b
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Suppose we choose common activation functions for our neural network, such as

What do all these functions have in common?

rectifier / ramp

soft-thresholding

hyperbolic tangent

Lifted Bregman training of neural networks
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All previous activation functions are proximal maps: 

σ(z) = proxΨ(z) := arg min
u∈ℝn { 1

2
∥u − z∥2 + Ψ(u)}

for some proper, convex and lower semi-continuous function Ψ : ℝn → ℝ ∪ {∞}

Example: Ψ(u) = {0 u ≥ 0
∞ u < 0 ⟹ σ(z) = max(0, z)

Moreau, Jean Jacques. "Fonctions convexes duales et points proximaux dans un 
espace hilbertien." (1962).

Lifted Bregman training of neural networks
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Example: Ψ(u) = α |u | ⟹ σ(z) =
z − α z > α
0 |z | ≤ α
z + α z < − α

for some proper, convex and lower semi-continuous function Ψ : ℝn → ℝ ∪ {∞}

Moreau, Jean Jacques. "Fonctions convexes duales et points proximaux dans un 
espace hilbertien." (1962).

All previous activation functions are proximal maps: 

Lifted Bregman training of neural networks
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Example: Ψ(u) = {u tanh−1(u) + 1
2 (log(1 − u2) − u2) |u | < 1

∞ otherwise

⟹ σ(z) = tanh(z)

for some proper, convex and lower semi-continuous function Ψ : ℝn → ℝ ∪ {∞}

Combettes, Patrick L., and Jean-Christophe Pesquet. "Deep neural network structures 
solving variational inequalities." Set-Valued and Variational Analysis (2020): 1-28.

All previous activation functions are proximal maps: 

Lifted Bregman training of neural networks
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All previous activation functions are proximal maps: 

for some proper, convex and lower semi-continuous function Ψ : ℝn → ℝ ∪ {∞}

Hasannasab, M., Hertrich, J., Neumayer, S., Plonka, G., Setzer, S., & Steidl, G. (2020). Parseval proximal neural 
networks. Journal of Fourier Analysis and Applications, 26, 1-31. 
Combettes, Patrick L., and Jean-Christophe Pesquet. "Deep neural network structures solving variational 
inequalities." Set-Valued and Variational Analysis (2020): 1-28. 
Hertrich, J., Neumayer, S., & Steidl, G. (2021). Convolutional proximal neural networks and plug-and-play algorithms. 
Linear Algebra and its Applications, 631, 203-234. 
Le, H. T. V., Repetti, A., & Pustelnik, N. (2023). PNN: From proximal algorithms to robust unfolded image denoising 
networks and Plug-and-Play methods. arXiv preprint arXiv:2308.03139. 

and many many more…

Lifted Bregman training of neural networks

Lots of works focus on proximal maps as activation functions, e.g.

σ(z) = proxΨ(z) := arg min
u∈ℝn { 1

2
∥u − z∥2 + Ψ(u)}



y = σ(Wx + b)

Wx + b (y)∈ ∂Ψ− y⟺

∂Ψ(y) = {p Ψ(z) ≥ Ψ(y) + ⟨p, z − y⟩ , ∀z}where is the subdifferential of Ψ

⟺ y = arg min
z { 1

2
∥z − (Wx + b)∥2 + Ψ(z)}

Lifted Bregman training of neural networks

= proxΨ(Wx + b)

Suppose we have samples  and want to find  such that(x, y) W, b
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∥ ⋅ ∥2 + Ψ)
*

(

(y)∈ ∂ ( 1
2

∥ ⋅ ∥2 + )Ψ⟺

⟺

Wx + b

Legendre, Adrien-Marie. Mémoire sur l'intégration de quelques équations aux différences partielles. In 
Histoire de l'Académie royale des sciences, avec les mémoires de mathématique et de physique. Paris: 
Imprimerie royale. pp. 309–351, 1789 
Werner Fenchel, Convex cones, sets, and functions. Princeton University, 1953 
Theorem 23.5,  Ralph Tyrell Rockafellar, Convex analysis, Princeton university press, 1970

y = σ(Wx + b)

where ( 1
2

∥ ⋅ ∥2 + Ψ)
*

(z) = sup
x {⟨x, z⟩ −

1
2

∥x∥2 − Ψ(x)}
) = ⟨y, ⟩Wx + b Wx + b

Lifted Bregman training of neural networks
Suppose we have samples  and want to find  such that(x, y) W, b



with Bregman / Fenchel function

1
2

∥y∥2 + Ψ(y) + ( 1
2

∥ ⋅ ∥2 + Ψ)
*

( ) ⟨y, ⟩z z−BΨ(y, z) =

Wang, X., & MB. A Lifted Bregman Formulation for the Inversion of Deep Neural 
Networks. Front. Appl. Math. Stat. 9, (2023).

Lifted Bregman training of neural networks
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with Bregman / Fenchel function

What is great about this function?

1. , for all  

2.  

3.  for 

BΨ(y, z) =
1
2
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Ψ (y, proxΨ(z)) ≥

1
2

∥y − proxΨ(z)∥2 ≥ 0 y, z

∇2BΨ(y, z) = proxΨ(z) − y

BΨ(y, z) = Ez(y) − Ez(proxΨ(z)) = D0
Ez
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Xiaoyu Wang, MB. Lifted Bregman Training of neural networks. JMLR 24(232):1—51, 2023. 
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Optimality conditions for  and :Wj bj

0 = (σ (Wj xj−1 + bj) − xj) x⊤
j−1

0 = σ (Wj xj−1 + bj) − xj

Lifted Bregman network

with Bregman / Fenchel loss

Xiaoyu Wang, MB. Lifted Bregman Training of neural networks. JMLR 24(232):1—51, 2023. 
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Lifted Bregman training of neural networks

1
2

|σ(z) − 1/2 |2

BΨ(1/2,z)

vs

Illustration:

σ(z) = max(0,z)

σ(z) = tanh(z)

σ(z) = soft-thresholding(z,1/2)



© Wikimedia commons

Sparse (denoising) autoencoder toy example

Fashion MNIST 
image codec

Images are centred

Numerical results

©becominghuman.ai

Xiao, H., Rasul, K. and Vollgraf, R., 2017. Fashion-mnist: a novel image dataset for 
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747.

https://en.wikipedia.org/wiki/Autoencoder#/media/File:Autoencoder_schema.png


Sparse (denoising) autoencoder toy example

Numerical results

© Wikimedia commons

min
s

∑
i=1

5

∑
j=1

BΨj (xi
j , Wjxi

j−1 + bj) + α xi
3 1

Idea: make encoding sparse

Network architecture:

σj(z) =
max(0,z) j ∈ {1,2,4}
soft-thresholding(z, ρ) j = 3
z j = 5 Layer dimensions 784-784-784-784-784

https://en.wikipedia.org/wiki/Autoencoder#/media/File:Autoencoder_schema.png


Numerical results

Sparse 



Numerical results

Trained on 1000 images Trained on 10000 images

LBN minimisation via implicit SGD and proximal gradient descent for subproblems*

*implementation details are on extra slide for the Q&A if anyone is interested



Numerical resultsExample: Proximal Neural Networks (PNNs) for image denoising

uk+1 = proxτkg* (uk − τkL(L*uk − z))

̂x = arg min
x∈ℝn { 1

2
∥x − z∥2 + g(Lx)}

A more traditional way to solve denoising problems is using proximal maps of the form

This problem can for instance be solved with the dual forward backward algorithm*, i.e.

̂x = z − lim
k→∞

L*uk

for k = 0,1,…

*P. L. Combettes, Đ. Dũng, and B. C. Vũ, “Dualization of signal recovery problems,” Set-Valued Var. Anal., vol. 
18, no. 3, pp. 373–404, 2010.

Alternatively, one can unroll the algorithm for a fixed no. of iterations  and learn trainable parameters , i.e.k* Lk

uk+1 = proxτkg* (uk − τkLk (L*k uk − z))
xk* = z − L*k* uk*

for k = 0,1,…, k* − 1



Numerical resultsExample: Proximal Neural Networks (PNNs) for image denoising

Alternatively, one can unroll the algorithm for a fixed no. of iterations  and learn trainable parameters , i.e.k* Lk

uk+1 = proxτkg* (uk − τkLk (L*k uk − z))
xk* = z − L*k* uk*

Approach perfectly suits lifted Bregman approach, i.e.

min
s

∑
i=1 [ℓ(zi − L*k* ui

k*, xi) +
k*−1

∑
k=0

Bτkg* (ui
k+1, ui

k − τkLk (L*k ui
k − zi))]

X. Wang, MB, A. Repetti, A lifted Bregman strategy for training unfolded proximal neural 
network gaussian denoisers, in: 2024 IEEE 34th International Workshop on Machine 
Learning for Signal Processing (MLSP), IEEE, 2024, pp. 1–6. 

for k = 0,1,…, k* − 1



Numerical resultsExample: Proximal Neural Networks (PNNs) for image denoising

X. Wang, MB, A. Repetti, A lifted Bregman strategy for training unfolded proximal neural 
network gaussian denoisers, in: 2024 IEEE 34th International Workshop on Machine 
Learning for Signal Processing (MLSP), IEEE, 2024, pp. 1–6. 



Part II: Regularised inversion of 
neural networks 



N( )

We consider the (deterministic) inverse 
problems of the form

where the goal is to recover      for given 
data

u† f

u†

f

=

∈ range(N )

u† = unknown solution

f = measured data

 is a neural networkN

Engl, H. W., Hanke, M., & Neubauer, A. (1996). Regularization of inverse problems (Vol. 375). 
Springer Science & Business Media.
Benning, M., & Burger, M. (2018). Modern regularization methods for inverse problems. Acta 
Numerica, 27, 1-111.

Inverting neural networks
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f δ

f δ

f δ = measured data

Engl, H. W., Hanke, M., & Neubauer, A. (1996). Regularization of inverse problems (Vol. 375). 
Springer Science & Business Media.
Benning, M., & Burger, M. (2018). Modern regularization methods for inverse problems. Acta 
Numerica, 27, 1-111.

u† = unknown solution

N( )u† =

u†

 is a neural networkN

Inverting neural networks
We consider the (deterministic) inverse 
problems of the form
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Example:

Why is this interesting?

Toy problem: Train  such that A A(u†
i ) ≈ u†

i

Wang, X., & MB. A Lifted Bregman Formulation for the Inversion of Deep Neural 
Networks. Front. Appl. Math. Stat. 9, (2023).

Simple autoencoder A(u) = W2 + b2max (0,W1u + b1)

u†
i A(u†

i )



Example:

Why is this interesting?
A(u) = W2 + b2

Toy problem: Train  such that A A(u†
i ) ≈ u†

i

max (0,W1u + b1)

u†
i A(u†

i )
Wang, X., & MB. A Lifted Bregman Formulation for the Inversion of Deep Neural 

Networks. Front. Appl. Math. Stat. 9, (2023).

Simple autoencoder

Solve  for R(N(u†
i )) ≈ u†

i N(u) = max (0,W1u + b1)

R(N(u†
i ))

 does not require training and 
only depends on pre-trained 
R

N
We can improve pre-trained 
decoders by replacing them 
with reconstruction methods



Example:

Why is this interesting?
nonlinear inverse problems

From Alexander Denker, Johannes Hertrich, Zeljko Kereta, Silvia Cipiccia, Ecem Erin, and Simon Arridge. Plug-and-
play half-quadratic splitting for ptychography. arXiv preprint arXiv:2412.02548, 2024.

f = |ℱ(u†) |

Ptychography



Example:

Why is this interesting?
nonlinear inverse problems

From Alexander Denker, Johannes Hertrich, Zeljko Kereta, Silvia Cipiccia, Ecem Erin, and Simon Arridge. Plug-and-
play half-quadratic splitting for ptychography. arXiv preprint arXiv:2412.02548, 2024.

f = |ℱ(u†) |

Idea: replace non-linearity  with neural network approximation  and solve  instead| ⋅ | N f = N(ℱu†)

Ptychography
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We can design another neural network  to approximate the inverse of : R N

R(N(u†)) ≈ u†

Neural network (Encoder)
Regularisation (Decorder)
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How can we invert neural networks?

We can design another neural network  to approximate the inverse of : R N

R(N(u†)) ≈ u†

Neural network (Encoder)
Regularisation (Decorder)

We choose neural networks such as

N(u) = proxΨ(Wu + b) Perceptron

Proximal map



Inversion of neural networks
How can we invert neural networks?

We can design another neural network  to approximate the inverse of : R N
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Inversion of neural networks
How can we invert neural networks?

We can design another neural network  to approximate the inverse of : R N

R(N(u†)) ≈ u†

Neural network (Encoder)
Regularisation (Decorder)

We choose neural networks such as

N(u) = Wl proxΨl−1
(Wl−1⋯ W2proxΨ1

(W1u + b1) + b2)⋯ bl−1) + bl Feed-forward networks



Inversion of neural networks
How can we invert neural networks?

We can design another neural network  to approximate the inverse of : R N

R(N(u†)) ≈ u†

Neural network (Encoder)
Regularisation (Decorder)

We choose neural networks such as

N(u) = Wl ul−1 + bl Residual neural networks
uj = uj−1 + Vj−1proxΨj−1 (Wj−1uj−1 + bj−1)



Inversion of neural networks
How can we invert neural networks?

We can design another neural network  to approximate the inverse of : R N

R(N(u†)) ≈ u†

Neural network (Encoder)
Regularisation (Decorder)

All previous networks can be written in compact form as

N(u) = Ku

Mu = VproxΨ (Wu + b)

tensor representation of 
all layers in one variable



Inversion of neural networks
How can we invert neural networks?

We can design another neural network  to approximate the inverse of : R N

R(N(u†)) ≈ u†

or more like
R( f δ) → u† for f δ → f = N(u†) when δ → 0

Open questions: • What architecture should we choose for  ? 
• Can we treat  as a black box or do we need to know its architecture and 

parameters when we construct  ? 
• Do we need to train , possibly from scratch? 
• Do we have any mathematical guarantees that  approximates the inverse of  ?

R
N

R
R

R N



Inversion of neural networks
We can design another neural network  to approximate the inverse of : R N

R(N(u†)) ≈ u†

Open questions: • What architecture should we choose for  ? 
• Can we treat  as a black box or do we need to know its architecture and 

parameters when we construct  ? 
• Do we need to train , possibly from scratch? 
• Do we have any mathematical guarantees that  approximates the inverse of  ?

R
N

R
R

R N

Example:
Neural network with arbitrary architecture

No idea

Yes

Yes
No

R( f δ) = hl (hl−1 (⋯ h1( f δ, p1), ⋯, pl−1), pl) Activation functions h1, …, hl

Parameters p1, …, pl



J(u)}

Inversion of neural networks
We can design another neural network  to approximate the inverse of : R N

R(N(u†)) ≈ u†

Open questions: • What architecture should we choose for  ? 
• Can we treat  as a black box or do we need to know its architecture and 

parameters when we construct  ? 
• Do we need to train , possibly from scratch? 
• Do we have any mathematical guarantees that  approximates the inverse of  ?

R
N

R
R

R N

Example: Variational regularisation with quadratic fidelity

Some ideas

No*

No
Possibly

R( f δ)

*Usually requires computation of backward-pass ; and can be as challenging as if one were to use  directly(∇N )* K

∈ arg min
u {1

2
∥N(u) − f δ∥2 +α



DJ(u, uk) }∈ arg min
u {

Inversion of neural networks
We can design another neural network  to approximate the inverse of : R N

R(N(u†)) ≈ u†

Open questions: • What architecture should we choose for  ? 
• Can we treat  as a black box or do we need to know its architecture and 

parameters when we construct  ? 
• Do we need to train , possibly from scratch? 
• Do we have any mathematical guarantees that  approximates the inverse of  ?

R
N

R
R

R N

Example: Iterative regularisation with quadratic fidelity

Some ideas

No*

No
Possibly

*Usually requires computation of backward-pass ; and can be as challenging as if one were to use  directly(∇N )* K

R( f δ) = uk* for + stopping criterionuk+1 1
2

∥N(u) − f δ∥2 +α



}∈ arg min
u {

Inversion of neural networks
We can design another neural network  to approximate the inverse of : R N

R(N(u†)) ≈ u†

Open questions: • What architecture should we choose for  ? 
• Can we treat  as a black box or do we need to know its architecture and 

parameters when we construct  ? 
• Do we need to train , possibly from scratch? 
• Do we have any mathematical guarantees that  approximates the inverse of  ?

R
N

R
R

R N

Example: Variational regularisation with bespoke fidelity

Several options

No

No
Yes

In the following, we will derive a suitable candidate for this bespoke data fidelity term

J(u)R( f δ) Bespoke (𝒩(u), f δ) +α



Inversion of neural networks
How can we invert neural networks?

We can design another neural network  to approximate the inverse of : R N

R(N(u†)) ≈ u†

Neural network (Encoder)
Regularisation (Decorder)

One possible choice for :R

(uρ, zρ) ∈ arg min
u,z {Eρ

Ψ(u, z) + J(u)} (variational regularisation)



with regularisation function  and data fidelity  defined asJ Eρ
Ψ

Eρ
Ψ(u, z) =

λ
2

∥Ku − f δ∥2 + BΨ(z, Wu + b) + χ=0(Mu − Vz) +
ρ
2

∥Mu − Vz∥2

Inversion of neural networks
One possible choice for :R

(uρ, zρ) ∈ arg min
u,z {Eρ

Ψ(u, z) + J(u)} (variational regularisation)

with Fenchel / Bregman penalty function

BΨ(z, x) = ( 1
2

∥ ⋅ ∥2 + Ψ)(z) + ( 1
2

∥ ⋅ ∥2 + Ψ)
*

(x) − ⟨z, x⟩



with regularisation function  and data fidelity  defined asJ Eρ
Ψ

Eρ
Ψ(u, z) =

λ
2

∥Ku − f δ∥2 + BΨ(z, Wu + b) + χ=0(Mu − Vz) +
ρ
2

∥Mu − Vz∥2

Inversion of neural networks
One possible choice for :R

(uρ, zρ) ∈ arg min
u,z {Eρ

Ψ(u, z) + J(u)} (variational regularisation)

with Fenchel / Bregman penalty function

BΨ(z, x) = ( 1
2

∥ ⋅ ∥2 + Ψ)(z) + ( 1
2

∥ ⋅ ∥2 + Ψ)
*

(x) − ⟨z, x⟩

BΨ(z, Wx + b) = 0 ⟺ z = proxΨ(Wx + b)
χ=0(Mu − Vz) = 0 ⟺ Mu = Vz



Inversion of neural networks
Example: Shallow two-layer neural networks (or linear combinations of 1d perceptrons)

N(u) =
m

∑
j=1

cj u, wj, bj, cj ∈ ℝproxΨj
( )wj u + bj



Inversion of neural networks
Example: Shallow two-layer neural networks (or linear combinations of 1d perceptrons)

u, wj, bj, cj ∈ ℝ

uj = ∀j ∈ {1,…, m}

N(u) =
m

∑
j=1

cj

proxΨj
( )wj u + bj

uj



Inversion of neural networks
Example: Shallow two-layer neural networks (or linear combinations of 1d perceptrons)

Corresponding variational regularisation framework:

uα ∈ arg min
u∈ℝ1+m

1
2

f δ −
m

∑
j=1

cjuj

2

+
m

∑
j=1

BΨj
(uj, wju0 + bj) + αJ(u0, u1, …, um)

Implicit/explicit coordinate descent implementation for choice J(u0, u1, …, um) =
1
2

|u0 |2

u, wj, bj, cj ∈ ℝ

uj = ∀j ∈ {1,…, m}

N(u) =
m

∑
j=1

cj

proxΨj
( )wj u + bj

uj



Inversion of neural networks

Implicit/explicit coordinate descent implementation for choice J(u0, u1, …, um) =
1
2

|u0 |2

Corresponding variational regularisation framework:

uk+1
l = prox(1+c2

l )−1 Ψl

cl (f δ − ∑l−1
j=1 cjuk+1

j − ∑m
j=l+1 cjuk

j ) + wluk
0 + bl

1 + c2
l

uk+1
0 = (1 + α/∥w∥2)−1 uk

0 − ∥w∥−2
m

∑
j=1

wj (proxΨj
(wjuk

0 + bj) − uk+1
j )

∀l ∈ {1,…, m}

uα ∈ arg min
u∈ℝ1+m

1
2

f δ −
m

∑
j=1

cjuj

2

+
m

∑
j=1

BΨj
(uj, wju0 + bj) + αJ(u0, u1, …, um)



Inversion of neural networks

Decoder:

uk+1
l = prox(1+c2

l )−1 Ψl

cl (f δ − ∑l−1
j=1 cjuk+1

j − ∑m
j=l+1 cjuk

j ) + wluk
0 + bl

1 + c2
l

uk+1
0 = (1 + α/∥w∥2)−1 uk

0 − ∥w∥−2
m

∑
j=1

wj (proxΨj
(wjuk

0 + bj) − uk+1
j )

∀l ∈ {1,…, m}

Encoder:

R( f δ) = (u*0 u*1 ⋯ u*m)⊤
where  are solutions of the fixed-point iteration u*0 , u*1 , ⋯, u*m

N(u) =
m

∑
j=1

cj proxj ( )wj u + bj



Inversion of neural networks
Example:

Ψj(v) = {0 v ≥ 0
∞ v < 0

⇒ proxΨj
(z) = ReLU(z) = max(0,z)

N(u) =
m

∑
j=1

cj

wj = 1, ∀j ∈ {1,…,25}m = 25

proxj ( )wj u + bj

α = 10−4

bj = − ( j − 1)h, j ∈ {1,…,25}, h = 3/50



Inversion of neural networks
Example: N(u) =

m

∑
j=1

cj

wj = 1, ∀j ∈ {1,…,25}m = 25

max(0, )wj u + bj

Function K(u) = u( 2
3 u)

3u

α = 10−4

bj = − ( j − 1)h, j ∈ {1,…,25}, h = 3/50



Inversion of neural networks
Example: N(u) =

m

∑
j=1

cj

wj = 1, ∀j ∈ {1,…,25}m = 25

max(0, )wj u + bj

Coefficientsα = 10−4

bj = − ( j − 1)h, j ∈ {1,…,25}, h = 3/50



Inversion of neural networks
Example:



Inversion of neural networks
Example:



Inversion of neural networks
Example:



Inversion of neural networks
Example:



Inversion of neural networks
Example: Residual neural networks

N(u) = ul

uk = uk−1 + W⊤
k proxΨk

(Wkuk−1 + bk) ∀ k ∈ {1,…, l}
Corresponding variational regularisation framework:

uα ∈ arg min
u { λ

2
∥Ku − f δ∥2 + BΨ(z, Wu + b) + J(u)}

for

M =

−I I 0 ⋯ 0
0 −I I 0
⋮ ⋱ ⋱ ⋮
⋮ −I I
0 0 ⋯ 0 0

W =

W1 0 0 ⋯ 0 0
0 W2 0 ⋯ 0 0
⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ Wl 0
0 0 0 ⋯ 0 0

b =

b1

b2
⋮
bl

0

subject to

l

∑
k=0

Ψk(zk)

Mu = W⊤z

Ψ(z0, …, zl) =



Inversion of neural networks
Example:

l = 20

Function K(u) = u3 + u



Inversion with theoretical 
guarantees? 



Inversion with theoretical guarantees?
Can we provide some theoretical properties for the objective function

or the regularisation operator?

R( f δ) ∈ arg min
u { λ

2
∥Ku − f δ∥2 + BΨ(z, Wu + b) + χ=0(Mu − Vz) +

ρ
2

∥Mu − Vz∥2 + J(u)}

Eρ
Ψ(u, z) =

λ
2

∥Ku − f δ∥2 + BΨ(z, Wu + b) + χ=0(Mu − Vz) +
ρ
2

∥Mu − Vz∥2



Inversion with theoretical guarantees?
Can we provide some theoretical properties for the objective function

or the regularisation operator?

R( f δ) ∈ arg min
u { λ

2
∥Ku − f δ∥2 + BΨ(z, Wu + b) + χ=0(Mu − Vz) +

ρ
2

∥Mu − Vz∥2 + J(u)}

Eρ
Ψ(u, z) =

λ
2

∥Ku − f δ∥2 + BΨ(z, Wu + b) + χ=0(Mu − Vz) +
ρ
2

∥Mu − Vz∥2



Inversion with theoretical guarantees?
Can we provide some theoretical properties for the objective function

A sufficient condition for convexity is .⟨∂Eρ
Ψ(u1, z2) − ∂Eρ

Ψ(u2, z2), (u1
z1) − (u2

z2)⟩ ≥ 0

It can be shown that for  a sufficient condition for achieving this inequality for all  isV = W⊤ u1, u2, z1, z2

Q := λK⊤K − ρ−1I − M − M⊤ ⪰ 0

Eρ
Ψ(u, z) =

λ
2

∥Ku − f δ∥2 + BΨ(z, Wu + b) + χ=0(Mu − Vz) +
ρ
2

∥Mu − Vz∥2

uj = uj−1 + W⊤
j−1proxΨj−1 (Wj−1uj−1 + bj−1)Example: ⟹  is positive semi-definiteQ



Inversion with theoretical guarantees?
uj = uj−1 − W⊤

j−1proxΨj−1 (Wj−1uj−1 + bj−1)Example:

f(x) = x + x3



Inversion with theoretical guarantees?
Can we provide some theoretical properties for the objective function

or the regularisation operator?

R( f δ) ∈ arg min
u { λ

2
∥Ku − f δ∥2 + BΨ(z, Wu + b) + χ=0(Mu − Vz) +

ρ
2

∥Mu − Vz∥2 + J(u)}

Eρ
Ψ(u, z) =

λ
2

∥Ku − f δ∥2 + BΨ(z, Wu + b) + χ=0(Mu − Vz) +
ρ
2

∥Mu − Vz∥2



Inversion with theoretical guarantees?
Can we provide some theoretical properties for the objective function

or the regularisation operator?

R( f δ) ∈ arg min
u { λ

2
∥Ku − f δ∥2 + BΨ(z, Wu + b) + χ=0(Mu − Vz) +

ρ
2

∥Mu − Vz∥2 + J(u)}

Eρ
Ψ(u, z) =

λ
2

∥Ku − f δ∥2 + BΨ(z, Wu + b) + χ=0(Mu − Vz) +
ρ
2

∥Mu − Vz∥2

No general results yet, but for

R( f δ) ∈ arg min
u

{BΨ( f δ, Wu + b) + αJ(u)}
we can show the following



Theorem:

DJ(u†, R( f δ)) ≤ 2δ2

α
+ α∥v†∥2 +

1
α (Ψ (f δ + αv†) + Ψ (f δ − αv†) − 2Ψ( f δ))

Here  denotes the Bregman distance w.r.t. .DJ J

Burbea Rao divergence 
between  and f δ + αv† f δ − αv†

suppose we have  =  and  and  satisfies the source 
condition . Then, a solution  satisfies

f proxΨ(Wu† + b) BΨ( f δ, Wu† + b) ≤ δ2 u†

W⊤v† ∈ ∂J(u†) uα ∈ arg min
u

{BΨ( f δ, Wu + b) + αJ(u)}

Wang, X., & MB. A Lifted Bregman Formulation for the Inversion of Deep Neural 
Networks. Front. Appl. Math. Stat. 9, (2023).

Inversion with theoretical guarantees?

Classical error estimate



Example
f = max(0,Wu† + b)Ψ(z) = {0 z ≥ 0

∞ else
⇒

⇒ Ψ (f δ + αv†) + Ψ (f δ − αv†) − 2Ψ( f δ) = 0 if v†
j ∈ [−

f δ
j

α
,

f δ
j

α ]
If we choose , then we observe α(δ) = δ 2/∥v†∥

DJ (u†, uα(δ)) ≤ 2 2 ∥v†∥ δ

= C

Inversion with theoretical guarantees?

Wang, X., & MB. A Lifted Bregman Formulation for the Inversion of Deep Neural 
Networks. Front. Appl. Math. Stat. 9, (2023).

⟶δ→0 0



Example: ReLU Perceptron

N(u) = max(0,Wu† + b)

Ground truth u† Data f

W : ℝ64×64 → ℝ512

b ∈ ℝ512

Random entries 
with zero mean and std one 

Wang, X., & MB. A Lifted Bregman Formulation for the Inversion of Deep Neural 
Networks. Front. Appl. Math. Stat. 9, (2023).

Inversion with theoretical guarantees?



Data f δ

Random entries 
with zero mean and std one 

Wang, X., & MB. A Lifted Bregman Formulation for the Inversion of Deep Neural 
Networks. Front. Appl. Math. Stat. 9, (2023).

Example: ReLU Perceptron

N(u) = max(0,Wu† + b)

Ground truth u†

Inversion with theoretical guarantees?
W : ℝ64×64 → ℝ512

b ∈ ℝ512



Reconstruction R( f δ) Data f δ

Random entries 
with zero mean and std one 

α = 0.015

J(u) = ∑
i=1

∑
j=1

|∇u |2
i, j,1 + |∇u |2

i, j,2

Wang, X., & MB. A Lifted Bregman Formulation for the Inversion of Deep Neural 
Networks. Front. Appl. Math. Stat. 9, (2023).

Example: ReLU Perceptron

N(u) = max(0,Wu† + b)

Inversion with theoretical guarantees?
W : ℝ64×64 → ℝ512

b ∈ ℝ512



α = 9 × 10−3

Six-layer convolutional autoencoder. Invert code with TV-based variational regularisation

Dimension of code is 300
u† A(u†) R( f δ)

J(u) = ∑
i=1

∑
j=1

|∇u |2
i, j,1 + |∇u |2

i, j,2

Wang, X., & MB. A Lifted Bregman Formulation for the Inversion of Deep Neural 
Networks. Front. Appl. Math. Stat. 9, (2023).

Inversion of neural networks
Example:



Conclusions & outlook



Conclusions & outlook
Conclusions:

Outlook:

we have

• Apply approach to real-world scenarios (blind deconvolution etc.) 
• Extend concepts to different architectures 
• Prove convergence results for architectures more complex than perceptrons 
• Explore parallel or distributed computing frameworks

• introduced a novel lifted training approach for feed-forward networks 
• shown that novel approach avoids differentiating activation functions 
• shown that approach can be used for inversion of neural networks (decoder without training!) 
• demonstrated that approach works empirically with numerical experiments 
• proven that for one layer we have a convergent regularisation method



Thank you for your attention!
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Lifted Bregman Training Lifted Bregman Inversion

Front. Appl. Math. Stat. 9 2013JMLR 24(232) 2023

https://www.frontiersin.org/articles/10.3389/fams.2023.1176850/full#h8
https://www.jmlr.org/papers/v24/22-0934.html


Implementation
We minimise 

BΨ ( ,E(Θ, X) =
1
2s

s

∑
i=1

L

∑
l=1

xl
i Wl xl−1

i +bl)



BΨ ( , )

Implementation
We minimise 

E(Θ, X) =
1
2s

s

∑
i=1

L

∑
l=1

xl
i Wl xl−1

i



We minimise 

via a combination of an implicit stochastic gradient method*

(Θk+1, Xk+1) = arg min
Θ,X

1
|Sp | ∑

i∈Sp
[

L

∑
l=1

BΨ (xi
l , Wlxi

l−1) +
1

2τk
∥Wl − Wk

l ∥2]
with random batch  and proximal gradient descent** for the inner problem:Sp

BΨ ( , )E(Θ, X) =
1
2s

s

∑
i=1

L

∑
l=1

xl
i Wl xl−1

i

Wj+1
l = Wj

l −
γ j

l

|Sp | ∑
i∈Sp

[σ (Wj
l (xi

l−1)j) (xi
l−1)⊤

j ] +
1
τk (Wj

l − Wk
l )

(xi
l)j = prox

μ j
l( 1

2 ∥⋅∥2+ Ψ) ((xi
l)j − μj

l ((Wj
l )

⊤ (σ (Wj
l (xi

l)j) − (xi
l+1)j) − Wj

l (xi
l−1)j))

Implementation



We minimise  via a combination of an implicit stochastic gradient method*E

(Θk+1, Xk+1) = arg min
Θ,X

1
|Sp | ∑

i∈Sp
[

L

∑
l=1

BΨ (xi
l , Wlxi

l−1) +
1

2τk
∥Wl − Wk

l ∥2]
with random batch  and proximal gradient descent** for the inner problem:Sp

Wj+1
l = Wj

l −
γ j

l

|Sp | ∑
i∈Sp

[σ (Wj
l (xi

l−1)j) (xi
l−1)⊤

j ] +
1
τk (Wj

l − Wk
l )

(xi
l)j = prox

μ j
l( 1

2 ∥⋅∥2+ Ψ) ((xi
l)j − μj

l ((Wj
l )

⊤ (σ (Wj
l (xi

l)j) − (xi
l+1)j) − Wj

l (xi
l−1)j))

Implementation

*Toulis, P., & Airoldi, E. M. (2017). Asymptotic and finite-sample properties of estimators based on stochastic 
gradients. The Annals of Statistics, 45(4), 1694–1727. 
**Lions, P. L., & Mercier, B. (1979). Splitting algorithms for the sum of two nonlinear operators. SIAM Journal on 
Numerical Analysis, 16(6), 964-979.



Implementation
We solve 

xα ∈ arg min
x

BΨ(yδ, Wx + b) + α R(x)



xα ∈ arg min
x

BΨ(yδ, Wx + b) + α

Implementation
We solve 

∑
p=1

∑
q=1

(∇x)p,q,1
2

+ (∇x)p,q,2
2

Here,  is a forward finite-difference discretisation of the gradient operator∇x

xα ∈ arg min
x

BΨ(yδ, Wx + b) + α sup
z

⟨∇x, z⟩ − ∑
p=1

∑
q=1

| ⋅p,q,1 |2 + | ⋅p,q,2 |2

⋆

(z)

We replace the regularisation function by its convex conjugate



Implementation

xα ∈ arg min
x

BΨ(yδ, Wx + b) + α sup
z

⟨∇x, z⟩ − ∑
p=1

∑
q=1

| ⋅p,q,1 |2 + | ⋅p,q,2 |2

⋆

(z)

We replace the regularisation function by its convex conjugate

and solve this saddle-point problem with a generalised PDHG method* 

xk+1 = xk − τx (W⊤σ (Wxk + b) − yδ) − αdivzk)
z̃k = zk + τz (2α∇xk+1 − α∇xk)

zk+1
p,q,d = z̃k

p,q,d / max (1, z̃k
p,q,1

2
+ z̃k

p,q,2

2

) for d ∈ {1,2}

*Chambolle, A., & Pock, T. (2016). An introduction to continuous optimization for 
imaging. Acta Numerica, 25, 161-319.


